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1. Introduction

Electromagnetic scattering by small particles is an important subject in a surprisingly wide
range of scientific and technical fields. For a long time, analytical solutions exist only for a few
types of highly symmetric geometries of single scatterers. Small particles in nature, however,
often have an aggregate structure of complex morphology. Due to two fundamental multiple
scattering effects — interaction and interference, electromagnetic multiparticle-scattering
and its theoretical description possess distinguishing features, in comparison with single-
particle scattering. The development of addition theorems for vector spherical wave functions
(VSWF) made it feasible to tackle multiparticle light-scattering problems analytically.!>2
Starting with the pioneer work by Liang and Lo® and Bruning and Lo,* researchers have made
substantial efforts to develop a rigorous multisphere scattering solution.>® This note briefly
summarizes an analytical far-field solution to electromagnetic scattering by an aggregate
of spheres in a fixed orientation,” ' which is implemented in the code gmmO1f.f. It is an
extension of Mie theory'>' to the multisphere case and referred to as the Generalized
Multiparticle Mie-solution (GMM).?

2. Expansion of incident plane wave in displaced coordinate systems

Fortran codes gmmO01f.f and gmmO01s.f calculate the scattering of a monochromatic plane
wave by an aggregate of nonintersecting, homogeneous spheres in a fixed orientation or
at an average over individual orientations. (Code gmmO01s.f and gmmO01f.f differ only in the
computer-memory requirement. The gmmO1s.f code is slower than gmmO01f.f but can handle a
very large number of component particles that gmmO01f.f is unable to handle.) The aggregate
is embedded in a non-absorbing homogeneous medium characterized by dielectric constant
g0 and permeability pg. Scattered fields from each individual spheres are solved in respective
sphere-centered reference systems. In an arbitrarily chosen primary joth coordinate system,
the Cartesian coordinates of the origins of these L displaced coordinate systems (i.e., the
sphere-centers) are (X7,Y7,Z77), j = 1,2,...,L. Without loss of generality, the incident
plane wave vector always points to the positive z direction.

To solve multisphere-scattering through the Mie-type multipole superposition approach,
the incident plane wave is expanded in terms of VSWF in each of the L sphere-centered
coordinate systems. A z-propagating plane wave with a linear polarization angle 3, is
characterized by the wave vector k = ké&,, where £k = 27/) is the wave number, A is
the incident wavelength in the surrounding medium, and &, together with &,,&, are the
orthonormal unit vectors in the Cartesian coordinate system. In the primary jyth coordinate
system, the incident electric field vector is

Eine = Egexp(ikz), (1)



where Eq = Ey(&, cos f§, + &,sin 3,) and ¢ = /—1. The harmonic time term exp(—iwt) is
suppressed, where w is the circular frequency. In the joth coordinate system, the incident
electromagnetic field can be expanded in VSWF as follows:

Eipe = Z S iB, [Pan NG (9,6, 6) + @M (.6, 6) . (22)
n=0 m=—n
Hie = —w—MOZ 5" Eun [ 1 NEL(0,6.6) + oML (0,6, 6)], (2b)

n=0m=—n

where p = kr and
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It needs to mention here that the normalization factor E,,, defined by Eq. (3) is different
from the one previously used,” %% which was
(n—m)!
ra— (4)
(n+m)!
Consequently, the constant factors in the scattering formulas summarized here and used in

gmmOlf f are different from those found in the references. Vector spherical wave functions
Mg,m and Nsnzl have a specific component form

Epn = Eoi"(2n + 1)
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where &,,8&y,&, are the orthonormal basis vectors in the spherical coordinate system, j,
is the spherical Bessel function of the first kind, P'* is the associated Legendre function of
the first kind, 1, (p) = pjn(p) is one of the Riccati-Bessel functions, a prime indicates the
derivative of a function with respect to its argument, and

m m
Tmn (€OS 0) —@Pn (cosb), (6a)
Ty (COS ) :%Pg" (cos ). (6b)

The definition used here for the associated Legendre function P" follows the convention
without the modulus (—1)™. From Egs. (1-3), (5), (6), and the orthogonality of VSWF, it
follows that the primary expansion coefficients in Eqs. (2) are given by
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Pmn = , (73)
mn 0 fO ‘Nmn P, 0 (b)|2 sin Hdﬁdqﬁ

RN exp (ik2)Eo - MY (, 0, ¢) sin #d0d
Emn o fo |an p, 8, ®)|*sin 0dfd¢

qmn



which result in

Pmn = Qmn = 0, |m| 7é 1; (83‘)
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Note that these results are different from those given in previous works due to the change
in normalization factor F,,,. In any displaced jth coordinate system centered on the jth
sphere, the expansion of the incident field has the same form as Egs. (2),

Efnc = Z Z ZEmn [p]mnNmn(p; ej Q&J) +q¥nnM$rlzzl(p]’9]’¢J):|’ (98,)
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where p/ = kr/. Because z/ = z — Z/, the incident electric field can also be written as
E! = Eiy. = Egexp(ikZ7)exp(ikz’). A constant phase term exp(ikZ’) is attached to
the origin of the jth coordinate system. This assures that, described in the jth coordinate
system, the incident field does not change the reference center for phase, which is always the
origin of the primary coordinate system. The expansion coefficients of the incident field in
Eqgs. (9) are thus given by

Phon = exp(ikZ)pmny @ = exp(1kZ7) Gruns (10)

which differ from the primary expansion coefficients only by a simple, constant phase term.

3. Partial scattered fields of individual spheres

Similar to the incident field, individual scattered fields of each component spheres can be
expanded in VSWF in respective sphere-centered coordinate systems,

Z Z i By [al, N&) (01,61, ¢") + 8L, ME) (o, 6", )], (11a)
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Fo n=1 m=—n
where M% and Ng% differ from Mg}b% and Nfﬁ% only in the generating function, which is
h(nl), the spherical Hankel function of the first kind, instead of j,,, the spherical Bessel function
of the first kind. Solving boundary conditions for partial scattering coefficients (al,,,b!,,)
for all component spheres consists of the first concrete step toward a complete multisphere
scattering solution. The solution of standard electromagnetic boundary conditions imposed
on the spherical surface of a ”detached” component sphere gives rise to’

R bo=0bQ (12)
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where @', and b!, are the Mie scattering coefficients of the isolated /th sphere. P! and @',
are the expansion coefficients of the total incident field for the /th sphere given by’

N7 v
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where A7 and BJ! are vector translation coefficients!:?

Tnw i characterizing the transfor-
mation of scattered waves from the jth sphere into incident waves for the [th sphere. The
total electromagnetic field incident upon a component sphere in an aggregate consists of
two parts: (1) the initial incident plane wave and (2) scattered waves from all other spheres
in the aggregate. Equations (12) and (13) involve partial scattered fields from all interact-
ing spheres and establish the large-dimensional linear system containing unknown partial

scattering coefficients of all component spheres:

(11L) NI v
a'lmn/a'ln + Z Z Z Agrlmuuafu/ + B%nuubfiy) p'lmn’ (14&)
j#l v=1 uy=—v
B N v
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In solving the partial scattered fields, vector translation coefficients (A%nlw, Bﬁ,fw) play a
key role. The following section reviews the analytical expressions for A7 ~and B7'  used

mnuy mnuv
in the code gmmO1£{.f for their evaluation.

4. Vector translation coefficients

As formulated by Xu,'%'” vector translation coefficients can be expressed in terms of the
Gaunt coefficient,'®

gmax
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where
p=n-+v-—2, (16a)
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Here, (d’!, 197!, ') are the spherical coordinates of the origin of the /th coordinate system
(i.e., the Ith sphere-center) in the jth coordinate system, a, = a(—m,n, u, v, p) is the Gaunt
coefficient, and

2p+3
by = Ay [(p+2)(p1 + Deapriag — (p+ 1) (p2 + 2)apyaaq—1],  Apia # 0, (17a)
P
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When A, = Apys =0, ie., A, vanishes independently of the value of p, B}, = 0. This
includes the cases: (i) 4 = m = 0 and (ii) 4 = —m and v = n. In addition, BZ., , =0
when (i) m = n and g = —v and (ii) m = —n and p = v. Also, in the following cases the
expression for b, is rather simple:
(i) g=1, N
b= 22y (18)
(P+3)(pL+2)
(i) ¢ = Qmax and 1+ v — 2¢yax = |0 — v| or |Mm + p,
(2p + 3)Aps1
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(iii) ¢ = ¢max + 1, "+ ¥ — 2¢max = /m + pu| + 1 and 4,5 # 0,
2 3 1 2
by sy = — 22 H 30 tx S+ 2Dpss (20)
p+2
Equations (15a) and (15b), the explicit expressions for A7, and BJ., ,, involve a single set

of Gaunt coefficients a, = a(—m, n, y, v, p). Note the negative sign in front of m. It is clear
from Eqs. (15) that an efficient evaluation of A7  and BJ! , relies on an accurate and
expeditious computation of Gaunt coefficients. Xu!”?® has obtained convenient recurrence
formulae for Gaunt coefficients, which are highly desirable in practical calculations. These
recurrence relations are reviewed in the following section.

In practical scattering calculations, there is a very useful numerical scheme developed by
Mackowski® for translating wave-expansion vectors between displaced coordinate systems.
Mackowski’s three-step (rotation-translation-rotation) technique is able to evade the compu-
tation of vector translation coefficients in general case by decomposition of A{fmw and B#mw
into rotational and axial translational parts. The code gmmO1f.f uses Mackowski’s three-step



procedure for the expansion-vector translation process and involves in practical calculations
only the translation along z axis. In the special case of translating wave-expansion vectors
along z axis, the expressions for vector translation coefficients become much simpler than the
general form, Eqgs. (15). In this particular case, A7}, and BJ. , exist only when m = p.
For a translation in the positive z direction (cos#/! = 1),

min(n,v)
Ay =Co Y iPCyaghfV (kd™), (21a)
q=0
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and in the negative z direction (cos #/! = —1),
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In the case of axial translation, the Gaunt coefficients involved are a(—m,n, m, v, p) only.

5. Recurrence formulae of Gaunt coefficients

The Gaunt coefficient is defined by'®

_(2p+1)(17—5—ﬂ)! ' S(1)PH(x s—|—,u$ T
afon. ) = LELE [ P pra) e (23)

An alternative definition for Gaunt coefficients is'?

gmax

Pi(@)Pl(x) =) agPy " (x), (24)

where p = n+ v — 2q, a; = a(s,n, u,v,p), and ¢max = min[n,v, (n+v — s+ ul|)/2]. As
derived by Xu,'”?® Gaunt coefficients have the following three-term recurrence relation,

Colly = C1Gq—1 + C2G4_2, (25)
where
co=(p+2)(p+3)(p1 + 1)(p1 + 2)Apsa0p41, (26a)
c1 =Ap0Ap3Ap s+ (p+1)(p+3)(p1 +2) (2 + 2) Apracpio (26b)
+ (P +2)(p+4)(p1 +3)(p2 + 3) Apia0ypys,
co=—(p+2)(p+3)(p2+3)(p2 + 4) Apt20p14. (26¢)



In Egs. (26), Ay, p1,p2 and «, are defined by Eqs. (17c-f), respectively, with —m replaced
by s. When p = s and v = n, A, vanishes independently of p so that the three-term relation
Eq. (25) reduces to two terms:

(p+2)(p1 + Dapria, = (p+ 1) (p2 + 2)py2a4-1- (27)
In particular, when p = s = 0, it further reduces to
Qp+10q = Qpi2Qq-1. (28)

When A, 4, =0 but A, ¢ # 0, the three-term relation Eq. (25) is replaced by the following
four-term recurrence formula,

Colly = C10q—1 + CoUg_2 + C304_3, (29)

where
co=(p+2)(p+3)(p+5)(p1+ 1)(p1+2)(p1 + 4) Aprepi1, (30a)
¢ =(p+5)(p1 + 4) Apre[Apr24prs + (P + 1)(p + 3) (1 + 2) (P2 + 2) 2], (30b)
c2 =(p +2)(p2 + 3) Apt2[Apt5Apis + (P +4)(p+ 6)(p1 + 5) (P2 + 5)apys], (30c)
cs=—(p+2)(p+4)(p+5)(p2 + 3)(p2 + 5)(P2 + 6) Ap+20p+6- (30d)

A recursive scheme for an accurate and fast evaluation of Gaunt coefficients based on these
recurrence relations has been devised by Xu!” and used in gmmO01f.f. In either backward or
forward recursion, the implementation of the (three-term and four-term) recurrence relations
require only one single starting value. At boundaries, any quantity of a, with the value of
q outside the range [0, ¢max| is treated to be zero. Explicit formulae for the starting values
for both backward and forward recursions in all possible cases are given in Xu.!” The code
gmmO1f.f involves calculation of the Gaunt coefficients a(—m, n, m, v, p) only. For this special
group of Gaunt coefficients, the recurrence relations, Eqs. (25) or (29), reduce to*?°

Qpy1Qq — (4m2 + ®pt2 + ap+3)aq_1 =+ Qpt4Qg_9o = 0. (31)

6. Total scattered far-field in a single-field representation

As shown above, all individual scattered fields from component spheres in an aggregate are
solved in respective sphere-centered coordinate systems. Following the solution of boundary
conditions for all partial scattering coefficients, the next step is to construct a single-field
representation for the total scattered field from an aggregate as a whole. This step is of
vital importance for nevigating towards a complete multisphere light-scattering solution.
Referring to an arbitrarily located common coordinate system, the total scattered field can
also be expanded in VSWF, analogous to Egs. (11). For example, in the primary joth
coordinate system, the single-field expansion of the total scattered field is of the form

Nmax n
Esa= Y Y iBun [0 NG (0,0, 0) + bmnM$) (0,0, 8)] , (32a)
n=1 m=—n
k Nmax n
_ 3) (3)
Huo = o0 20 D Bon [banNi(0:6,6) + anMiZ (0,6, 6)] (32b)

n=1 m=—n



where Ny, = max(N?), j = 1,2, ..., L. There is a very simple relation between total and
partial scattering coefficients for the far field, involving only a simple phase term.® This is
because the translation of VSWF between displaced coordinate systems has an obviously
correct asymptotic form valid in the far zone:

ME) (0,0", ¢") = exp(—ikAYME) (p, 0, ), (33a)
N® (',0", ¢") = exp(—ikAYNE) (p, 0, ), (33b)

where Al = X'sinfcos¢ + Yisinfsing + Z'cosf. As discussed in detail by Xu,® in
constructing a single-field expansion for the total scattered far-field, the use of Egs. (33),
the asymptotic form of addition theorems for far-field translation, is superior to appealing
to the general vector addition theorems for VSWF,

M) =30 Y B " [448,, M0 (0,0.6) + B N0 0.0)] . (31a)
n= 1m_—n
20,6, 6) Z Z S [B%%MUMS;%(/J,H, 6)+ A%, ND (p,0,6)] . (34n)

n=1m=—n

Ljo Ljo i i i
Here, (Ammw, an/.w) are also vector translation coefficients. The only difference between

(Alggw, B,’%gw) and (A%, Bl ) is the generating function, j, for the former and A for

the latter. Based on Egs. (33), the total scattering coefficients in Egs. (32) regarding the far
field are given by®

L
= exp(—ikA)d.,, ZeXp —ik AN, (35)

=1

which do not involve general addition theorems represented by Eqs. (34) and leave vector
translation coefficients (A%, ,, B4 ) out. It is worth emphasizing that am, and by, given

above in Egs. (35) are angular-dependent because A’ varies with § and ¢. This brings distinct
features to the theoretical description of radiative multiparticle-scattering.

7. Amplitude scattering matrix

A rigorous analytical representation of the amplitude scattering matrix of an aggregate of
particles is pivotal in developing a complete multiparticle scattering formulation. It allows to
formulate all fundamental aggregate-scattering properties analytically. Explicit expressions
for the amplitude scattering matrix of an aggregate of spheres are first discussed by Xu.”
The formulae are later revised based on the far-field solution to multisphere scattering.®

According to van de Hulst?' and Bohren and Huffman,?? for a z-propagating incident
plane wave, the relation between incident and scattered amplitudes in far zone can be con-
veniently written in the matrix form

EHsca — eXp[ik(T - 2)] Sy 53 E||inc (36)
EJ_sca —ikr S4 Sl EJ_inc ’



where (Ejjinc, Elinc) and (Ejjsca, F1sca) are, respectively, the incident field and the scattered
far-field components, parallel and perpendicular to the scattering plane that is defined by
the z axis, i.e., the incident direction, and the scattering direction. For the multisphere-
scattering case under consideration, the incident amplitudes are

Ejinc = Egcos(¢ — Bp) exp(tkz),  Elinc = Eysin(¢ — 3;) exp(ikz), (37)
and the four elements of the amplitude scattering matrix are given by”®

n

Sa(0, ¢) = z exp(—ikA') Z Z 1 +150m (38a)

n=1 m=0

< (0, cos|(m — 1)¢ + ] + 9L, sinl(m — 1) + 5]},

n

L o N 1
S3(0, ¢) = ; exp(—ikA )Z Z 1+ 0o (38b)

n=1 m=0

< (L, cos{(m — 1) + 5] — WL, sinf(m — 1) + 5]},

n

Su(0,6) =D exp(—ikAh) > " H" 1 +150m (38c)

n=1 m=0

X {_Z@lmn COS[(’ITL - 1)¢ + ﬁp] + Elmn Sin[(m - 1)¢ + ﬁp]}a

L Nt n
, 1
5i0.6) = 2 e (kA 33 (384)

n=1 m=0

X {éf,m cos[(m —1)¢ + 5,] + iO! sin[(m — 1)¢ + Bol}-

In Eqgs. (38a—d), dom is the Kronecker delta symbol,

\Ijinn = a'lmn%m” + b'lmnﬁ-mn + (_1)m(al—mn7~'mn - bl—mnﬁ'mn)a (39a)
(I)lmn = almn%mn + binnﬁ-mﬂ - (_1)m(al—mn7~'mn - blfmnﬁmn): (39b)
einn = a’innﬁ-mn + binn%m" - (_1)m(a’l—mnﬁ-mn b—mn%m")ﬂ (390)
Einn = ainnﬁ'mn + blmn%mn + (_1)m(al—mn7~rmn - bl—mn%mn)a (39d)

where 7,,, and 7., are normalized angular functions, 7, = CrinTmn and Tn = ChrinTmn,
with Cpp =1 "Epn/ Eo, i.e.,

(40)

2n+1) (n— m)!] 12

Crmn = [n(n +1) (n+m)

Convenient recurrence relations for 7,,, and 7,,, are similar to and can be easily derived
from those for m,,, and 7,,,. It is worthwhile to mention that the formulae given above are
for a single polarization state of the incident plane wave with an arbitrary linear polarization
angle 3,. A conventional definition of the amplitude scattering matrix is

s—| % St (41)
Siost |

9



where the two elements of Sy and S, are associated with the linear polarization state of the
incident plane wave of 3, = ¢ and the remaining elements, S3 and S, are with 8, = ¢+90°.
Accordingly, the four elements of the amplitude scattering matrix are

Sg 0,¢) = Zexp —ikAl) Z E . +5 [\Ifl(¢ cos(m — 1) + i®4®) sin(m — 1)¢] ) (42a)
n=1m=0 Om
Z exp(—ikA?) Z Z 5 [z@l %) cos(m — 1)¢ — EX®) sin(m — l)qﬁ] ) (42b)
n=1m= 0 Om
S3(0,4) = Zexp —ikAl) Z Z : +5 [z(Dl $+90%) sin(m — 1)¢ + WLLHI) cog(m — l)gb] ,
n=1m=0 Om
(42c)

S+(0,¢) = Zexp —ikAl) Z Z T 50 [Hl $+90%) gin(m — 1)¢ — i©42+90°) cos(m — 1)(,25] )

n=1m=0

(42d)

where \Il%{fl), @ME, @lT,({fL, and Z49) are given by Egs. (40a—d) in terms of a,& bmn), al_(gn,

and b_(,,zn solved in Egs. (14) for 5, = ¢, and the similar for the case of 5, = ¢ + 90°.

Note that the definition for the amplitude matrix used in the gmmO1lf code and all
other gmm fixed-orientation codes is slightly different from the one described above. In the
definition of van de Hulst and Bohren & Huffman, both (Ejjca, £ 1sca) and (Ejjinc, E1inc) refer
to the same scattering plane. For the amplitude matrix used in all gmm fixed-orientation
codes, however, (E”inc, E|inc) are defined with respect to the z-z plane only, which is much

more convenient in practical calculations [see Ref. 23 for details].

8. Total and differential cross sections

Based on the rigorous solution to the amplitude scattering matrix, analytical expressions for

all other fundamental scattering properties have been derived.® 10

A. Scattering cross section and asymmetry parameter
Xu® has shown that the total and differential scattering cross sections, Cy., and Cé
aggregate of spheres are given by

of an

ca’

L N n

sca - Z sca ZZ Z Re Amn mn + blr;nbgt)n] ) (43)

=1 n=1m=—n

where

L NI v

- Z Z Z (A%n/u/afw + Bgrlm/u/b{w) ’ (44&)

j=1 v=1 p=—v
L NJ v

=222 (Aifmw b + Bﬁénuuaﬁu)- (44b)

7=1 v=1 p=—v
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Note that AL = §,,,6,, and B!~ =0. Also, aDl and b are quite different from the

Mmnuv mnuy
total scattering coefficients af  and bf, expanded at the center of sphere [ [see Egs. 32].

The asymmetry parameter cos f of an aggregate of spheres is similarly given by®

L N n

030 = oS5 3 Re [aln,al, + 85,50, (45)

5€a 11 n=1m=—n

where
~(l) = fi b(l) + f2a£2n+ + f3a7(’fl)n . (46a)
B0 = f1a® + b+ (46b)
m
fi= Wﬂ (46¢)
_ 1 (n—=1(n+1)(n—m)(n+m) 1/2
b= n [ (2n—1)(2n+1) } ‘ (46e)

B. Extinction cross section

The total extinction cross section of an aggregate is given by® !0

L N n

EXt Z ext — ZZ Z R‘e pmnainn—i_q'f:mb'lmn)’ (47)

=1 n=1 m=—n

where C! , is the contribution of the /th component, i.e., the differential extinction cross
section of the Ith component sphere. For the case of a z- propagatmg incident plane wave,

L Nt
Cext = 2—72TRe Z exp(—ikZ") Z Vv2n+1
k =1 n=1 (48)
X [ (alln + blln) eXp(iﬂp) - (al—ln - bl—ln) eXp(_iﬁP)} .

In particular, for the two typical polarization states of the incident plane wave, 5, = 0°
(z-polarized) and /3, = 90° (y—polarized), the corresponding extinction cross sections are

cl%) = ReZexp —ikZ") Z\/2n+ [am -l—bl(oo - l(0° +5'0 }, (49a)

C§§f° Re Z i exp(—ikZ") Z V2n+1 [am l(goo) + alfsi(:bo) — blfsi(:bo)] . (49b)

Absorption cross sections can simply be calculated by Cyps = Cext — Csca. Nevertheless, Chps
has also been explicitly formulated®® and the three cross sections Ceyxi, Csca, and Chps can
thus be computed independently. The difference between the two numerical results of C,ps
can be served as a check on the accuracy of the numerical scattering solution.
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C. Back-Scattering cross section
For a z-propagating incident plane wave, the back-scattering cross section is defined as

dr o
Chatc = 5|5 (6 = 180°) ?

(50)

where S(180°) = S1(180°) = —S5(180°). Because T, (—1) and 7y, (—1) exist only when
Im| =1, m,(=1) = (=1)""n(n+1)/2, and 71, (—=1) = —m1,(—1), Egs. (38-40) imply that

L N

S(180°) ZZ 1)"/2n + 1exp(ik Z")
I=1 n=1 (51)

x| (e = Bha) exp(i8p) — (a1 +810) exp(—i,)

from which the total and differential back-scattering cross sections of aggregated spheres can
be readily obtained.

9. 7T-matrix formulation

The multisphere scattering solution GMM summarized above can be presented in an alter-
native form of T-matrix formulation.'® The linear equations set up by boundary conditions,

Egs. (14), can be written in the compact matrix form, Aa = P, where a = [ [ bﬁm]T,

P = [plmn,qﬁnn}T, and A = [AY], [, =1,2,...,L, 1 <n < N'|m| < n. Aisa square
matrix. Its inverse T = A~!is the particle-centered aggregate T-matrix. The entire solution
of GMM rests directly on T.

A. Amplitude scattering matrix

All equations for the amplitude scattering matrix elements remain unchanged except that
the partial scattering coefficients in Eqs. (40) are now given in terms of the particle-centered
aggregate T-matrix,

Nmax
/ 111 112 11 112
§ : 2v+1 [ Tsnll/ Tsnlu - Tsn —1v + Tsn,flu) COS ﬁp

(52a)

- (T 4TI+ TR, - TH) tsin, |,

Nma,x
= 3 3 VIR (T T T T ) cos

(52b)

(T, 4T, TR, T isin /ap] ,

where Npa, = max(N7)(j =1,2,...,L) as given earlier and

T, = Z exp(ikZ7)TImd, (53)
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which implies that 77?9 = 0 when v > N7. In particular, for the two typical incident

sSnuv

polarizations 5, = 0° or 90°, Egs. (52) become

Nmax
Z v 2v+1 Tzillu TslrlLQlV - Tirlll 1v + Tﬁ}f 1y) 3 (54&)
Nmax
o Z Vv +1 (T, + Tty — Tonoiy + Toni 1) (54b)
NmaX
Cl R Z v 2v + T‘s{}ﬁu Tslrlflu Ti}zl v Tsl’}l,?fly) ) (54C)
Nma.x
o Z Vo +1 (T, + T, + T, — Tine_1)) - (54d)
In practical calculations, T matrices (Tff;gw) for all I can also be directly computed without
the calculation of T, the sphere-centered aggregate T-matrix (Tg}ggy) This can be done

through the same interation procedure used in solving the boundary condition equations for
partial scattering coefficients a! = and b} .

B. Cross sections
! Nmax

Cext = RQZZZZZ\/Qn+1 (2v + 1) exp(—ik Z")

n=1 v=1 p=1 ¢=1

Inly 1n,—1v

{Tlpq + (- 1)qupq exp(i28,) (55)

1P [T exp(-i26) + (1T, ] |

L Nt N Nmax Nmax 2

Coa= RN Y NS S (v e + 1]

=1 n=1m=—n v=1 V=1 p=1 ¢g=1 q’:l
26
{TZEZTU [T+ exp(i28,) (<1 T, ] 0

mn,—1v/

()T, [exp(—i2B,) T + (~1)T T, |,

L N! N Nmax Nmax 2 2 2

mo RedoD0 20 3 3 33N (v e + 1))

=1 n=1m=-—n v=1 V=1 p=1 ¢g=1 ¢'=1

. (57)
{T:ssl,, TR 4 explingy) (17T

cosf =

* )l t)l
+( 1) Trlr?'g —1lv [exp( 12/613) mnfg’ +( 1)q Tr(nZqulu’j| ’
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where

L N oW
t)pg _ § : E : E : 'pq '(3-p)a
mn/u/ [Amnm’n’Tm’n’uu + anm’n’Tm 'n'uy | (58&)
'=1n'=1m'=—n’
t)lpg _ 3 —p)q t)lpg t)lpq
mnuu f ) + f m n+1,uv + f3 m,n—1,uv (58b)

with fi, fo, f3 defined by Eqs. (46).

L L N' Nmax N Nax 2
!
Coak = ), Chax = RGZZZZZZZZZZ
=1 =1 n=1 v=1 I'=1n'=1v'=1 p=1 q=1 p'=1¢'=1

(—=1)" [(2n + 1) (20’ + 1) (20 + 1) (20 + 1)]"? exp (z’kZ”')
(2 [T+ (COPTe exp(-i26,)
- Tlp1qn1ueXp(i25p) + (=1)* Tlplq;,—lu]}

7

e ap [T2 + 0T e8]

- Tl Zl)nq’lu’ GXp( Z2ﬂp) ( )q Tl,ln’ —1u’] }

In the multisphere-scattering T-matrix formulation given above, a single-centered aggre-
gate T-matrix T® can be derived as

TP Zexp zkAl T'ra

mnuv mnuy

(60)

=" Texp [i (k- d/ — kA")] TS,

Both T! and T include the incident phase term and thus vary with incident direction.
Consequently, T! and T' are not the T-matrix in the normal sense. Only the particle-
centered T-matrix T is independent of incident field.

10. Practical examples for using code gmmO1f.f

This section provides practical examples for testing the multisphere-scattering code gmmO1f£.f.
Each example includes input and output files, laboratory scattering measurements for 7;; and
igo (the dimensionless polarized scattered intensities as a function of scattering angle), and a
figure showing the comparison of theoretical calculation results with the experimental data
of 717 and i99. In scattering calculations, 77 = |S1|? and 499 = [S3|%, where S; and S, are the
amplitude scattering matrix elements. Most of the experimental data are obtained using the

modern w-band microwave scattering facility at the Laboratory for Astrophysics, University
of Florida.?*25
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Example 1

This example refers to two identical optical glass BK7 spheres in contact.?® Size parameter of
each component sphere is 7.86 and the refractive index of the spheres is (2.5155,0.0213). The
orientation of this bisphere system is such that the axis of symmetry of the two spheres is
parallel to the scattering plane and perpendicular to the incident plane wave vector. Figure
1 shows the comparison of i1, and 795 between theoretical calculation results from gmmO1f.f
and laboratory scattering measurements for this simple aggregate of spheres.

J[()g]l[]@LZZ)

| | | | | | |
0 60 120 180
Scattering Angle (degrees)
Figure 1: Comparison between laboratory scattering measurements (”expt.”) and theoretical solu-

tions ("theory”) for 411 and i99 of an aggregate of two idential optical glass BK7 spheres in a single
orientation.

A sample file of gmmO1f.par for compiling the code:

parameter (nLp=2,np=20).
Two input files, all output files, and the two experimental data files for i;; and 45, are in
examO1.data.

Example 2

Figure 2: An aggregate of 240 identical nylon spheres (see Zerull et al. 1993).

Shown in this example is an aggregate of 240 identical nylon spheres, configured like a
”Christmas star”. An individual sphere has the size parameter of 0.58 and refractive index
of (1.735,0.007). In 1989, Zerull et al.?” measured the scattering of this 240-sphere aggregate
at an average over azimuthal angles (i.e., an average over orientations when the aggregate

15



rotates about its axis perpendicular to the scattering plane), using a microwave scattering
facility at Bochum, Germany. Figure 3 compares theoretical predictions with the laboratory
data obtained by Zerull et al. for the averaged i;; and 795 of the 240-sphere aggregate.
A sample file of gmmO1f.par for compiling the code:

parameter (nLp=240,np=4).
The two input files, all output files, and the two experimental data files for 711 and iy are
in exam02.data.

log,,(Intensity)
Polarization

| | | | | | |
0 60 120 180
Scattering Angle (degrees)

Figure 3: Comparison between theoretical solutions (”theory”) and laboratory scattering measure-
ments ("expt.”) for azimuthal-averaged i11 and 799 of the aggregate of 240 identical nylon spheres.
The experimental data were obtained by Zerull et al. in 1989.

Example 3
‘ ‘ T T ‘ T T
4 K xxx expt.
[ o theory |
- /=\N
-;T{ g~ ~=<N
IER E
2 I Q0
o ! o
72 L
\ L \ L.
0 60 120 180 0 60 120 180

Scattering Angle (degrees)

Figure 4: Comparison between theoretical predictions and laboratory microwave scattering
measurements for the angular distributions of i;; and 495 of a linear chain of three acrylic
spheres.

This example is for a linear chain consisting of three touching identical acrylic spheres. Each
component sphere has the size parameter of 7.49 and refractive index of (1.615,0.008). The
orientation of this three-sphere chain is such that its axis of symmetry is along the direction
of propagation of the incident plane wave. Figure 4 shows the comparison between computed
and measured 7;; and 9o for this aggregate of three spheres.
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A sample file of gmmO1f.par for compiling the code:

parameter (nLp=3,np=20).
The two input files, all output files, and the two experimental data files for i1; and i are
in examO03.data.

Example 4

This example refers to an aggregate of nine identical acrylic spheres that form a 3 x 3 square
array. Its orientation is such that the square surface plane is parallel to the scattering plane
and its two sides are perpendicular to the direction of propagation of the incident radiation.
Each component sphere has the size parameter of 5.03 and refractive index of (1.615,0.008).
Figure 5 is the comparison between theory and experiment for 4;; and 799 of this square array
of nine spheres.

A sample file of gmmO1f.par for compiling the code:
parameter (nLp=9,np=15)

The two input files, all output files, and the two experimental data files for i;; and i are
in exam04.data.

‘ ‘ T T ‘ T T
xxx expt. |
theory

]OglO(iBZ)

0 60 120 180

Scattering Angle (degrees)

Figure 5: Comparison of computed 7;; and i, with laboratory scattering measurements for
a 3 X 3 square array of nine acrylic spheres.

Example 5

In this example is a two-layer rectangular aggregate of eighteen identical acrylic spheres.
Each of the two layers is a 3x3 square sphere-array. The top and bottom square surface
planes are parallel to the scattering plane and the two pairs of sides are, respectively, parallel
and perpendicular to the direction of propagation of the incident plane wave. Each compo-
nent sphere has the size parameter of 5.03 and refractive index of (1.615,0.008).

A sample file of gmmO1f.par for compiling the code:
parameter (nLp=18,np=15).

The two input files, all output files, and the two experimental data files for i1; and iy are
in exam05.data.
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]OglO(iBZ)

0 60 120 180 0 60 120 180

Scattering Angle (degrees)

Figure 6: Comparison of the computed 7;; and 799 from gmmO1f.f with laboratory scattering
measurements for a 18-sphere aggregate.

Example 6

In this example is a pyramid-like aggregate of fourteen identical acrylic spheres. The 3x3
square bottom of the pyramid is parallel to the scattering plane and the two pairs of the
square sides are parallel and perpendicular to the incident direction, respectively. Component
spheres are the same as in examples 4 and 5.

4 K xxx expt. |
& theory

}[Ogm@u)
]Ogm(izz)

0 60 120 180

Scattering Angle (degrees)

Figure 7: Comparison of the computed 7;; and ig5 from gmmO1f.f with laboratory scattering
measurements for a 25-sphere square array.

A sample file of gmmO1f.par for compiling the code:
parameter (nLp=14,np=15)

The two input files, all output files, and the two experimental data files for 717 and iy are
in exam06.data.

Example 7

This example shows a 5 X 5 square sphere-array. The 25 component spheres are identical
and the same as in examples 4-6.
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Scattering Angle (degrees)

Figure 8: Comparison of the computed i;; and 792 from gmmO1£.f with laboratory scattering
measurements for the 18-sphere aggregate in example 5.

A sample file of gmmO1f.par for compiling the code:

parameter (nLp=25np=15).
The two input files, all output files, and the two experimental data files for i1; and i are
in exam07.data.

Example 8

This example refers to an aggregate of 32 acrylic spheres, which has a 5-sphere linear chain
on the top, a 6 x 2 rectangular array in the middle, and a 5 x 3 rectangular array at the
bottom. The bottom plane of the aggregate is parallel to the scattering plane and the longer
sides of the two rectangular arrays and the axis of symmetry of the top linear chain are
perpendicular to the incident plane wave vector.

6 T T T T

k <xx expt. 4
4 A m theory —

1Og10<122)

O“GO“120“180 O“60“120“180
Scattering Angle (degrees)

Figure 9: Comparison of the computed 7;; and igs from gmmO1f.f with laboratory scattering
measurements for a 32-sphere aggregate.

A sample file of gmmO1f.par for compiling the code:
parameter (nLp=32,np=15).

The input and output files and the experimental data of i;; and i are in examO08.data.
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Example 9_1

This example refers to an aggregate of an aggregate of fifteen spheres. The configuration
of this aggregate is such that three identical 3/8” optical BK7 glass spheres are on top of a
6 x 2 rectangle bottom of twelve 1/4” acrylic spheres. The axes of symmetry of the top three
BKY7 spheres and the two linear chains of six acrylic spheres are along the incident direction
and parallel to the scattering plane of ¢ = 0°. The 6 x 2 rectangle bottom of the aggregate
has a 3.5° tilt angle with the scattering plane. All neighboring spheres are in contact.

6 I ‘ T

XXXXX eX]pt 7
s &&& — theory

]Ogm(in)
N

2 \ I \ I ]
0 60 120 180
6 ‘ \ ‘ \ \
[ xooxx €Xpl.
4 1% —— theory —
= 2
Qa0
O
— 0
2 C ‘ ‘ | ]
0 60 120 180
4 | | |
’ XXXXX eX]pt T
o theory _|

10%10@12)

0 60 120 180

Scattering Angle (degrees)

Figure 10: Comparison between theoretical and experimental results for a fifteen-sphere
aggregate. The top three identical spheres have an individual size parameter of 7.49 and
refractive index of (2.5155,0.0213). The bottom twelve identical spheres have an individual
size parameter of 5.03 and refractive index of (1.615,0.008).
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The two input and all output files as well as the laboratory scattering measurement data for
111, 192, and 415 are in exam09_1.data.

Example 9_2

This is the same aggregate in the above example 9_1 except that the 15-sphere aggregate is
rotated in the scattering plane by 45°.

6 I | T

S oo eXpl. 7
4 &E& o

1Og10<111)

6 I ‘ T
ke XXXXX eX]pt.
4 —— theory —
= 2
a0
O
- 0
2 ‘ ‘ | ]
0 60 120 180
4 ‘ \ ‘ \ \
[~ XXXXX eX]pt 7
o —— theory _|

1Og10<112)

0 60 120 180

Scattering Angle (degrees)

Figure 11: Comparison of the theoretical results of 711, 799, and %15 with laboratory scattering
measurements for the 15-sphere aggregate in example9_1 after a rotation in the scattering
plane by 45°.

The input and output files as well as the experimental data are in exam09_2.data.
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11. Internal field distributions

This code includes also the calculation of the three-dimensional distributions of internal fields
inside component spheres, which has been discussed in detail in Ref. 11.
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